Diffusion MRI Design Notes: Difference between revisions

From VrlWiki
Jump to navigation Jump to search
No edit summary
pipeline sketch
 
(5 intermediate revisions by 2 users not shown)
Line 2: Line 2:




* Win's Pipeline - In project/brain/pipeline/coro/ and install_linux/bin/brain/
[[Image:Pipelines.jpg|1000px]]


  coro_dicom2niifti.py - Dicom files ==> Niifti
* <span style="color:blue">Win's Pipeline</span> - In project/brain/pipeline/coro/ and install_linux/bin/brain/
 
  coro_dicom2nifti.py - Dicom files ==> Nifti
  coro_register.py    - Coregister a set of MRI images against a reference template image.
  coro_register.py    - Coregister a set of MRI images against a reference template image.
                         Produce registered niifti DWIs for performing dti steps.
                         Produce registered nifti DWIs for performing dti steps.
                        Also creates registration matricies.
  coro_dti.py          - Compute a dti; the CIT pipeline does a better job.
  coro_dti.py          - Compute a dti; the CIT pipeline does a better job.




* Legacy Pipeline - In project/brain/pipeline/ and install_linux/bin/brain/
* <span style="color:green">Legacy Pipeline</span> - In project/brain/pipeline/ and install_linux/bin/brain/


  format_conversion/  niftii2mriimage - Registered niifti DWI ==> MRI Image
  format_conversion/  nifti2mriimage - Registered nifti DWI ==> MRI Image
  tensor/mritensorop/  mritensor      -            Mri Image ==> DTI and scalar images
  tensor/mritensorop/  mritensor      -            Mri Image ==> DTI and scalar images
  streamtube/tubegen/  tubegen        -                  DTI ==> DTI tractogram
  streamtube/tubegen/  tubegen        -                  DTI ==> DTI tractogram
 
  tubefa???
  tubefa???
  project/brain/brainapp              - Interactively create statistics.
  project/brain/brainapp              - Interactively create statistics.




* DTK Pipeline tools - In import/dtk/dtk_v0.5_linux/ and import/dtk/trackvis_v0.5_linux/
* <span style="color:purple">DTK Pipeline tools</span> - In import/dtk/dtk_v0.5_linux/ and import/dtk/trackvis_v0.5_linux/


  DTK - DWI => DTI or QBI
  DTK - DWI => DTI or QBI
Line 32: Line 35:
  NYI:  Simple Tubegen - DTI and scalar images ==> Tracts
  NYI:  Simple Tubegen - DTI and scalar images ==> Tracts
  Scalar sampling
  Scalar sampling
  Tractogram culling  
  common/libcurvecollection/ -Tractogram culling  
  Boolean ROI selection
  Boolean ROI selection
  Stats
  Stats
  project/brain/roi_select/ - Tract filtering.
  project/brain/roi_select/ - Tract filtering.




* GUI Pipeline Interface
* GUI Pipeline Interface


Configuration file (.cfg) + Data ==> Custom Python Script (or Makefile or Sh script)
Configuration file (.cfg) + Data ==> Custom Python Script (or Makefile or Sh script)
                                ==> Run the script ==> Intermediate and result files.
                                  ==> Run the script ==> Intermediate and result files.
                                ==> Log output
                                  ==> Log output
common/libcurvecollection

Latest revision as of 22:11, 17 August 2010

This page is a work in progress.


  • Win's Pipeline - In project/brain/pipeline/coro/ and install_linux/bin/brain/
coro_dicom2nifti.py  - Dicom files ==> Nifti
coro_register.py     - Coregister a set of MRI images against a reference template image.
                       Produce registered nifti DWIs for performing dti steps.
                       Also creates registration matricies.
coro_dti.py          - Compute a dti; the CIT pipeline does a better job.


  • Legacy Pipeline - In project/brain/pipeline/ and install_linux/bin/brain/
format_conversion/   nifti2mriimage - Registered nifti DWI ==> MRI Image
tensor/mritensorop/  mritensor       -             Mri Image ==> DTI and scalar images
streamtube/tubegen/  tubegen         -                   DTI ==> DTI tractogram

tubefa???
project/brain/brainapp               - Interactively create statistics.


  • DTK Pipeline tools - In import/dtk/dtk_v0.5_linux/ and import/dtk/trackvis_v0.5_linux/
DTK - DWI => DTI or QBI
      The CIT pipeline does a better job.
DTK - DTI or QBI ==> a tractogram
TrackVis - Produce statistics from a tractogram or QBI.


  • New Pipeline in the Works
NYI:  Simple Tubegen - DTI and scalar images ==> Tracts
Scalar sampling
common/libcurvecollection/ -Tractogram culling 
Boolean ROI selection
Stats
project/brain/roi_select/  - Tract filtering.


  • GUI Pipeline Interface
Configuration file (.cfg) + Data ==> Custom Python Script (or Makefile or Sh script)
                                 ==> Run the script ==> Intermediate and result files.
                                 ==> Log output

common/libcurvecollection