Diffusion MRI Design Notes
Jump to navigation
Jump to search
This page is a work in progress.
- Win's Pipeline - In project/brain/pipeline/coro/ and install_linux/bin/brain/
coro_dicom2nifti.py - Dicom files ==> Nifti
coro_register.py - Coregister a set of MRI images against a reference template image.
Produce registered nifti DWIs for performing dti steps.
Also creates registration matricies.
coro_dti.py - Compute a dti; the CIT pipeline does a better job.
- Legacy Pipeline - In project/brain/pipeline/ and install_linux/bin/brain/
format_conversion/ nifti2mriimage - Registered nifti DWI ==> MRI Image tensor/mritensorop/ mritensor - Mri Image ==> DTI and scalar images streamtube/tubegen/ tubegen - DTI ==> DTI tractogram tubefa??? project/brain/brainapp - Interactively create statistics.
- DTK Pipeline tools - In import/dtk/dtk_v0.5_linux/ and import/dtk/trackvis_v0.5_linux/
DTK - DWI => DTI or QBI
The CIT pipeline does a better job.
DTK - DTI or QBI ==> a tractogram
TrackVis - Produce statistics from a tractogram or QBI.
- New Pipeline in the Works
NYI: Simple Tubegen - DTI and scalar images ==> Tracts Scalar sampling common/libcurvecollection/ -Tractogram culling Boolean ROI selection Stats project/brain/roi_select/ - Tract filtering.
- GUI Pipeline Interface
Configuration file (.cfg) + Data ==> Custom Python Script (or Makefile or Sh script)
==> Run the script ==> Intermediate and result files.
==> Log output
common/libcurvecollection